Diversity of T Cell Epitopes in Plasmodium falciparum Circumsporozoite Protein Likely Due to Protein-Protein Interactions
نویسندگان
چکیده
Circumsporozoite protein (CS) is a leading vaccine antigen for falciparum malaria, but is highly polymorphic in natural parasite populations. The factors driving this diversity are unclear, but non-random assortment of the T cell epitopes TH2 and TH3 has been observed in a Kenyan parasite population. The recent publication of the crystal structure of the variable C terminal region of the protein allows the assessment of the impact of diversity on protein structure and T cell epitope assortment. Using data from the Gambia (55 isolates) and Malawi (235 isolates), we evaluated the patterns of diversity within and between epitopes in these two distantly-separated populations. Only non-synonymous mutations were observed with the vast majority in both populations at similar frequencies suggesting strong selection on this region. A non-random pattern of T cell epitope assortment was seen in Malawi and in the Gambia, but structural analysis indicates no intramolecular spatial interactions. Using the information from these parasite populations, structural analysis reveals that polymorphic amino acids within TH2 and TH3 colocalize to one side of the protein, surround, but do not involve, the hydrophobic pocket in CS, and predominately involve charge switches. In addition, free energy analysis suggests residues forming and behind the novel pocket within CS are tightly constrained and well conserved in all alleles. In addition, free energy analysis shows polymorphic residues tend to be populated by energetically unfavorable amino acids. In combination, these findings suggest the diversity of T cell epitopes in CS may be primarily an evolutionary response to intermolecular interactions at the surface of the protein potentially counteracting antibody-mediated immune recognition or evolving host receptor diversity.
منابع مشابه
Circumsporozoite protein genes of malaria parasites (Plasmodium spp.): evidence for positive selection on immunogenic regions.
The circumsporozoite (CS) protein is a cell surface protein of the sporozoite, the stage of the life cycle of malaria parasites (Plasmodium spp.) that infects the vertebrate host. Analysis of DNA sequences supports the hypothesis that in Plasmodium falciparum, positive Darwinian selection favors diversity in the T-cell epitopes (peptides presented to T cells by host MHC molecules) of the CS pro...
متن کاملGenetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran
Abstract Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...
متن کاملProtective Antibody and CD8+ T-Cell Responses to the Plasmodium falciparum Circumsporozoite Protein Induced by a Nanoparticle Vaccine
BACKGROUND The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+) and CD4(+) T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the eff...
متن کاملAllelic variation in the circumsporozoite protein of Plasmodium falciparum from Thai field isolates.
Allelic variation in the Plasmodium falciparum circumsporozoite (CS) protein gene has been examined by sequencing the entire gene in 15 isolates from an endemic area of Thailand. The isolates contain a total of six new allelic forms of the tetrapeptide repeats and eight variants of the T cell epitope (TCE) region of the CS gene. All nucleotide substitutions in the TCE are nonsynonymous. There i...
متن کاملA modified hepatitis B virus core particle containing multiple epitopes of the Plasmodium falciparum circumsporozoite protein provides a highly immunogenic malaria vaccine in preclinical analyses in rodent and primate hosts.
Despite extensive public health efforts, there are presently 200 to 400 million malaria infections and 1 to 2 million deaths each year due to the Plasmodium parasite. A prime target for malaria vaccine development is the circumsporozoite (CS) protein, which is expressed on the extracellular sporozoite and the intracellular hepatic stages of the parasite. Previous studies in rodent malaria model...
متن کامل